PUBLISHER: Bizwit Research & Consulting LLP | PRODUCT CODE: 1453738
PUBLISHER: Bizwit Research & Consulting LLP | PRODUCT CODE: 1453738
Global Agricultural Robots Market is valued approximately at USD 11.57 billion in 2022 and is anticipated to grow with a healthy growth rate of more than 20.6% over the forecast period 2023-2030. Agricultural robots are specialized machines equipped with advanced technologies such as AI and sensors to automate tasks in farming. They encompass various types including harvesting robots for picking crops, weeding robots for removing weeds, planting robots for precise seed placement, and monitoring robots for assessing soil and crop conditions. These robots aim to enhance efficiency, productivity, and sustainability in agriculture by reducing labor costs, minimizing environmental impact, and improving crop yields. According to United Nations projections, the global population is expected to reach 8.6 billion by 2030 and 9.8 billion by 2050, placing immense pressure on traditional food production methods to ensure food security. Agricultural robots and drones are emerging as transformative technologies, offering precision and optimization capabilities that revolutionize farming practices. Moreover, with fewer farm laborers due to population growth and urban migration, agricultural robots are increasingly adopted to automate tasks and reduce reliance on manual labor. The agricultural robot's market is positioned for substantial growth as the demand for cost-effective and efficient labor solutions escalates, coupled with the increase in IoT devices connected with farm management to analyze data on various factors.
In addition, the rise in adoption of aerial data collection tools in agriculture and enhanced Precision farming through drone technology is exhibiting a positive influence on the market growth across the globe. Drones, also known as Unmanned Aerial Vehicles (UAVs), are increasingly employed across various agricultural applications including soil and crop monitoring, spraying, planting, irrigation, and field surveillance. Modern farmers are leveraging data-driven approaches to optimize fertilizer and pesticide usage, thereby enhancing crop yields. With a focus on efficiency, farmers utilize drones for tasks such as crop spraying, monitoring, irrigation management, and livestock health assessments. By analyzing factors like weather conditions, soil fertility, and nutrient levels, farmers efficiently plan field activities, including timely crop harvesting, particularly for seasonal and specialty crops. This trend presents substantial growth opportunities for UAVs within the agricultural sector. The benefits of UAVs include enhanced operational efficiency, minimized delays, optimal resource allocation, and lower ownership costs, driving significant market demand among end users. in 2022, For instance the Indian government proposed to provide 100% subsidiary to state agriculture colleges, farm machinery training and testing institutes, and ICAR institutes. Thus, these aforementioned factors are propelling the growth of Agricultural Robots Market during the estimated period. Moreover, the surge in use of electrification in agricultural robots, as well as growing use of agricultural-based software via smartphones present various lucrative opportunities over the forecast years. However, the high cost of automation for small farms and the lack of standardization of agricultural robot technologies are challenging the market growth throughout the forecast period of 2023-2030.
The key regions considered for the Global Agricultural Robots Market study include Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market in 2022 with largest market share owing to the rise in adoption of advanced technology in response to labor shortages and high labor costs, coupled with the region's elevated per-capita disposable income. Moreover, government support for the implementation of agricultural robots, such as unmanned aerial vehicles and driverless tractors, as part of smart farming initiatives, is further propelling market expansion. Also, players within this market are making substantial investments in the development of cost-effective and highly efficient robots aimed at enhancing yields while minimizing costs for farmers. For instance, in 2021, Santa Monica-based Future Acres unveiled its inaugural robot, Carry, designed specifically for grape picking. Utilizing AI technology, Carry collaborates seamlessly with human workers, addressing labor shortages and introducing tailored solutions to meet the evolving needs of farmers. This concerted effort to address labor challenges and introduce innovative products underscores the significant growth trajectory of the agricultural robotics market in North America. Whereas, Asia Pacific is expected to grow at the highest CAGR over the forecast years. The region faces issues of labor shortages and increasing wage costs, making investments in robotics an appealing prospect for farmers seeking more cost-effective and sustainable solutions. Robust government backing, coupled with the diverse agricultural landscape are significantly propelling the demand for agriculture robotic across the region.
The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.
The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below:
List of tables and figures and dummy in nature, final lists may vary in the final deliverable
List of tables and figures and dummy in nature, final lists may vary in the final deliverable