PUBLISHER: BioInformant | PRODUCT CODE: 1493841
PUBLISHER: BioInformant | PRODUCT CODE: 1493841
CAR-T cell therapy is a remarkably promising treatment for cancer patients. It is a type of immunotherapy where doctors collect immune cells, modify them in a laboratory, and provide them the power to easily recognize and kill cancer cells. When infused into a patient, the cells get multiplied and stay in the body as "living drugs."
T-cells form the backbone of CAR-T cell therapy. T-cells are the workhorses of our immune system and play a key role in directing the immune response and killing cells infected by pathogens. In CAR-T cell therapy, blood is drawn from the patient and the T-cells are separated out. In the laboratory, a disarmed virus is then used to genetically engineer the T-cells to produce chimeric antigen receptors (CARs) on their surface. Once infused into the patient, these CARs enable the T-cells to recognize and attach to an antigen on the cancer cell, leading to its destruction.
Between 2017 and today, nine CAR-T products reached commercialization, and this number is estimated to reach double-digits by 2032. Of these, six are U.S.FDA-approved CAR-T cell therapies, each of which have received approvals in other major healthcare markets as well.
In addition, two CAR-T therapies have received approval from the Chinese National Medical Products Administration (NMPA), Relma-cel and Yuanruida, and one CAR-T cell therapy has received approval from the Indian Central Drugs Standard Control Organisation (CDSCO), NexCAR19.
These historic approvals demonstrate that the CAR-T market has arrived and is taking the biotech industry by storm. M&A activity has been particularly aggressive, with Celgene snagging Juno Therapeutics for $9 billion in 2018 and Bristol-Myers Squibb (BMS) acquiring Celgene for $74B by 2019. Gilead's acquisition of Kite Pharma for $11.9 billion also made waves, as did other transactions, such as Astellas Pharma's acquisition of Xyphos Biosciences and its CAR-T technology for $665 million.
The billion-dollar CAR-T cell therapy market would not have been possible without the remarkable efficacy of the early CAR-T therapies in treating several types of blood cancers. The next frontier for CAR-T cell therapies will be to apply them in the fight against solid tumors. All of the nine marketed CAR-T cell therapy products and nearly three-quarters (75%) of the ongoing clinical trials utilize an autologous treatment approach. Thus, the development of allogeneic CAR-T cell therapies will open critical market opportunities.
Another key issue is the "vein-to-vein" time or the time that elapses between apheresis and product delivery. Thus, CAR-T therapies are usually recommended for the end-stage patients who have exhausted all other treatment options. Another challenge encountered by CAR-T therapies is the reimbursement issues across the U.S. and Europe.
For the continued progress of CAR-T cell therapies, the industry is trying to mitigate these challenges. Several CAR-T players have started to use efficient gene-transfer tools to impregnate T cells with CARs, and there are numerous examples of partnerships to develop CRISPR and electroporation technologies to modify T cells. Some companies also use "on-off" switches that can turn off CAR-T cells to prevent toxicity. Thus far, the goal of achieving success with solid tumors remains elusive with clinical trials producing a low response rate. Thus, ongoing efforts within the CAR-T sector are focused on discovering effective solid tumor-specific antigens.
The purpose of this report is to describe the current state of CAR-T cell therapies, as well as the future of the CAR-T industry landscape at large. Importantly, it describes details of the CAR-T cell therapy products approved to date, as well as late-stage CAR-T clinical trials that could lead to near-term market approvals. Ranging from small start-ups to billion-dollar companies, CAR-T companies are now proliferating in all healthcare markets worldwide.