PUBLISHER: Allied Market Research | PRODUCT CODE: 1414962
PUBLISHER: Allied Market Research | PRODUCT CODE: 1414962
According to a new report published by Allied Market Research, titled, "Aerospace Composite Market," The aerospace composite market size was valued at $29.6 billion in 2022, and is estimated to reach $87 billion by 2032, growing at a CAGR of 11.5% from 2023 to 2032.
One of the primary advantages of aerospace composite is the reduction in weight compared to traditional materials like aluminum. This weight reduction directly translates to improved fuel efficiency, lower operational costs, and increased payload capacity. Aerospace composites exhibit exceptional strength-to-weight ratios, ensuring robust structural integrity. This strength is coupled with durability, leading to materials that withstand harsh environmental conditions, including extreme temperatures and corrosive elements.
Composites offer designers unparalleled flexibility in shaping components, allowing for aerodynamic efficiency and innovative structures that were previously unattainable. This flexibility facilitates the creation of complex, streamlined forms that enhance overall performance. Aerospace composites are inherently resistant to corrosion, a critical factor in extending the lifespan of aircraft and spacecraft. This resistance reduces maintenance requirements and enhances long-term reliability.
Automated lay-up processes have revolutionized the manufacturing of aerospace composites by introducing a level of precision and efficiency previously unattainable. Traditionally, composite materials were manually laid up, a labor-intensive and time-consuming process that sometimes resulted in inconsistencies. The automated lay-up processes and robotic systems are employed to precisely position composite materials layer by layer, following predefined designs. This automation ensures a higher degree of accuracy, reducing human errors and variability. In addition, it significantly accelerates the production timeline, as robots work continuously without the need for breaks.
Aerospace composites offer a compelling solution to the demands imposed by the surging air travel market. The primary driver behind this adoption is the material's remarkable combination of lightweight properties and structural strength. As airlines strive to optimize fuel efficiency, the reduced weight of composite materials becomes a pivotal factor. This weight reduction translates directly into lower fuel consumption, resulting in cost savings and a reduced environmental impact.
Composites offer excellent thermal insulation properties, reducing the impact of external temperature variations on the structural components. This feature is particularly valuable in spacecraft, where extreme temperature differentials are encountered during orbital missions. Aerospace composites exhibit remarkable damage tolerance, with some materials designed to resist and contain damage without compromising the overall structure's integrity. This quality enhances safety by preventing catastrophic failures in the event of localized damage.
The aerospace composite market share is segmented into fiber type, manufacturing process, aircraft, and region. On the basis of fiber type, the market is classified into carbon fiber, glass fiber, aramid fiber, and others. On the basis of the manufacturing process, the market is divided into ATL or AFP, filament winding, resin transfer molding, hand layup, and others. On the basis of the aircraft, the market is categorized into commercial aircraft, business and general aviation, civil helicopters, and others. Region-wise, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.
Based on aircraft, commercial aircraft dominated the aerospace composite market. Aerospace composites have found increasing use in the interior components of commercial aircraft. Cabin structures, including walls, ceilings, and flooring, benefit from the lightweight and durable nature of composites. This reduces the overall weight of the aircraft and allows for innovative interior designs, contributing to passenger comfort and satisfaction. The doors and hatches of commercial aircraft are subjected to rigorous operational cycles and must meet stringent safety standards. Aerospace composites provide a suitable solution by offering high strength and durability while minimizing weight. This contributes to the overall safety and efficiency of aircraft operations.
Integration of nanotechnology in composite development in aerospace drives aerospace composite market growth. Nanotechnology integration into composite development is transforming the aerospace industry. Nanocomposites, a fusion of nanotechnology and traditional composites, bring about significant improvements in mechanical properties, durability, and lightweight features for aircraft. These materials showcase superior thermal and electrical conductivity, crucial for effective heat dissipation and integration of advanced electronic systems in aerospace applications. Furthermore, the incorporation of nanotechnology has streamlined manufacturing processes, allowing for scalable production of nanocomposite components.
In addition, the report covers profiles of key industry participants such as Bally Ribbon Mills, DuPont, Hexcel Corporation, Mitsubishi Electric Corporation, SGL Carbon, Solvay, Spirit AeroSystems, Inc., TEIJIN LIMITED., Toray Industries Inc, VX Aerospace Corporation.